9464

Simulation of a Steady-State Binary Distillation Column

Consider an ideal equimolar binary mixture of benzene and toluene at . This mixture, with a thermal quality equal to 0.5, is fed to a 10-stage column with a total condenser and partial reboiler. The feed stage is stage 7. The feed flow rate is taken equal to . You can set the values of the reflux ratio and reboil ratio . This Demonstration computes the temperature and composition profiles using a rigorous approach, which includes both energy and mass balances. It is clear that the numerical simulation gives data similar to the graphical method developed by Ponchon–Savarit. The molar flow rate profiles for both the liquid and vapor phases are also displayed. A separate calculation showed that, for and , stage 7 is the optimal feed location. Indeed, if one changes the feed location while keeping the same values for and , the cooling and heating duties will be higher. The simulation finds cooling and heating duties equal to and , respectively, for and . All results found in this Demonstration show perfect agreement with those given by HYSYS (http://www.aspentech.com/hysys/).

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+