Bound States of a Semi-Infinite Potential Well

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

This Demonstration shows the bound state energy levels and eigenfunctions for a semi-infinite potential well defined by . The solutions are obtained by solving the time-independent Schrödinger equation in each region, and requiring continuity of both the wavefunction and its first derivative. This leads to a transcendental equation of the form , where , ( is shown). The graphical solutions to this equation give the bound state energy levels, and are shown in the left panel. The right panel shows the energy levels and the corresponding eigenfunctions for varying well depth.

Contributed by: Porscha McRobbie and Eitan Geva (March 2011)
Open content licensed under CC BY-NC-SA




Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.