 # Cyclic Numbers

Initializing live version Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

This Demonstration shows the first 10 cyclic numbers.

[more]

A cyclic number with digits is such that its digits are shifted cyclically when multiplied by an integer up to . For example, with , ; multiplying by 6 shifts the digits of by three places: . The decimal representation of the reciprocal of has a period of maximum length . So .

For , leading zeros are needed for . For example, the second cyclic number (which comes from ) is the integer .

[less]

Contributed by: Izidor Hafner (December 2016)
Open content licensed under CC BY-NC-SA

## Snapshots   ## Details

The first 10 values of that produce maximum period decimal expansions (with digits) for are the reptend primes 7, 17, 19, 23, 29, 47, 59, 61, 97 and 109 [1, pp. 171–175].

References

 D. G. Wells, The Penguin Dictionary of Curious and Interesting Numbers, New York: Penguin Books, 1991.

 N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. "Full Reptend Primes: Primes with Primitive Root 10." oeis.org/A001913.

 N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. "Numbers with Digits Such That the First Multiples Are Cyclic Permutations of the Number, Leading 0's Omitted (or Cyclic Numbers)." oeis.org/A180340.

## Permanent Citation

Izidor Hafner "Cyclic Numbers"
http://demonstrations.wolfram.com/CyclicNumbers/
Wolfram Demonstrations Project
Published: December 2 2016

 Feedback (field required) Email (field required) Name Occupation Organization Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback. Send