Fed-Batch Fermentation

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

A fermentor is fed at hr with a sterile substrate. In the absence of outlet flow, the volume in the batch-fed fermentor will increase linearly. This Demonstration shows the time-dependent behavior of four functions: the biomass concentration, the substrate concentration, the product concentration, and the volume in the reactor.


This batch operation obeys the following equations:

with if ,




where , and )

and is the volume of reacting media in the fermentor, is the biomass concentration, is the substrate concentration, is the inlet flow rate, is the feed concentration of sterile nutrient, is the product concentration, is the saturation constant, is the maximum specific growth rate, is the yield coefficient, and and are the rate constants in the product kinetics.

The biomass concentration becomes constant and the product concentration and volume increase linearly because they depend linearly on the biomass and the inlet flow rate, respectively. The total biomass increases linearly versus time. This behavior corresponds to a situation where the growth rate of biomass is limited by the feeding rate.


Contributed by: Housam Binous (March 2011)
Open content licensed under CC BY-NC-SA



I. J. Dunn, E. Heinzle, J. Ingham, and J. E. Prenosil, Biological Reaction Engineering: Dynamic Modelling Fundamentals with Simulation Examples, 2nd ed., Weinheim: Wiley-VCH, 2003.

Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.