Multiplication Tables for the Group of Integers Modulo n

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

Given a positive integer , the set of positive integers coprime to satisfies the axioms for an Abelian group under the operation of multiplication modulo . For instance, and because . This Demonstration shows the array plot of the multiplication table modulo corresponding to .

Contributed by: Jaime Rangel-Mondragon (August 2012)
Open content licensed under CC BY-NC-SA



The order of is given by Euler's totient function , implemented in Mathematica as EulerPhi[n], which for has values . is cyclic only if is , or , where is an odd prime and . The first few values for which is not cyclic are . Any generator in the cyclic case is called a primitive root modulo .


[1] Wikipedia. "Multiplicative Group of Integers Modulo n." (Jul 31, 2012) _integers _modulo _n.

Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.