Adiabatic Converter for Sulfur Trioxide Production

A furnace is necessary for the combustion of liquid sulfur in air: .
The sulfur dioxide then undergoes a catalytic conversion into sulfur trioxide, , in an adiabatic reactor: .
Sulfur trioxide is prepared on a massive scale as a precursor to sulfuric acid.
This Demonstration computes the extent of reaction, , the exit temperature, , and the composition of the effluent for the adiabatic converter used for production. To do so, one has to write: (1) the chemical equilibrium using the equilibrium constant , obtained by fitting the free energy data versus temperature for SO2 and SO3, and (2) the energy balance: , which exploits the fact that the converter is adiabatic.
Finally, the temperature at the entrance of the converter is chosen equal to =700 Kelvin, a value that depends on the energy produced in the furnace, , used to generate live or superheated steam.
The user-specified values of the mole fraction of SO2 are in the range typically used in the industry.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+