9846

Approximating the Riemann Zeta Function with Continued Fractions

Continued fractions provide a very effective toolset for approximating functions. Usually the continued fraction expansion of a function approximates the function better than its Taylor or Fourier series. This Demonstration shows the high quality of a continued fraction expansion to approximate the Riemann ζ function.
The selected point (red), for which the continued fraction expansion is performed, must be between the two limits on the axis. The number of terms used in the continued fraction expansion is .
This continued fraction expansion is only correct for real numbers greater than 2; it cannot be used for general complex numbers.
The formula of the continued fraction expansion in this Demonstration is truncated when it would be too big to display.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

This is a special case of a continued fraction expansion for the polylog function, as is .
With the definitions
and
,
the continued fraction approximation for the polylog function can be written as
.
In particular, for ,
as well as
.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+