Convolution Sum

The component of the convolution of and is defined by . Note that is the sequence written in reverse order, and shifts this sequence units right for positive . Thus one can think of the component as an inner product of and a shifted reversed . For purposes of illustration and can have at most six nonzero terms corresponding to . These terms are entered with the controls above the delimiter. In the table the gray-shaded cells mark the position . The bold number in the table and larger point on the plot indicate .
  • Contributed by: Bruce Atwood (Beloit College)
  • Suggested by: Patrick Van Fleet (University of St. Thomas)



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Convolution is a topic that appears in many areas of mathematics: algebra (finding the coefficients of the product of two polynomials), probability, Fourier analysis, differential equations, number theory, and so on. One important application is processing a signal by a filter. For more information see P. J. Van Fleet, Discrete Wavelet Transformations, Hoboken, New Jersey: John Wiley & Sons, Inc., 2008.
In signal processing the list is the data or input signal and the kernel is a filter or the response to a unit impulse for a linear time-invariant system. There are several examples in the bookmarks to look at and explore by modifying the terms of and . Students might want to think about and then experiment with this Demonstration to answer the following questions: (1) what scales by a constant? (2) what would cause to be a delayed version of ? and (3) what interpretation would you give to convolving a signal with itself?
Except for padded zeros at the beginning and end of , this Demonstration replicates the output of the Mathematica command ListConvolve[h, x, {1, -1}, 0]. Additional interesting applications can be found in the Mathematica help for ListConvolve, at this link.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+