Energy Density of a Magnetic Dipole

A circular conductor with the current and the radius lies in the plane at . The vector potential in the direction as a function of and has the same symmetry as the current density in cylindrical coordinates , , . According to the cylindrical symmetry the observation points in the plane can be taken at . The source is described by the angle , running from to . The following computations are made:

• the magnetic field in the direction
• the magnetic field in the direction
• the magnetic energy density
• the integrated magnetic field in the direction
• the integrated magnetic field in the direction
• the integrated magnetic energy density
• the integrated vector potential in the direction

The fields at can be regarded as a good approximation of the integrated fields. The four field , , , are displayed for the four independent variables , , , . The observation points are described by , and the source by , .



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+