10217

# Flow in a Vertical Channel with Walls at Different Temperatures

Consider a vertical parallel-plate channel of width with walls at different temperatures and , . Two cases are studied: (1) pure free convection (i.e., the channel is closed at both ends and there is no net flow); and (2) mixed free and forced convection (a pressure gradient is present). The velocity (solution of the momentum equation) is given by
,
where is gravitational acceleration, is the thermal expansion coefficient, is the reference temperature taken equal to the mean temperature, is the kinematic viscosity, is the dynamic viscosity, is the pressure gradient, and is the dimensionless position.
The velocity can be expressed as , where is the mean velocity and is the maximum velocity when the pressure gradient is zero.
If and , one recovers pure free convection. When , the velocity profile is the expected parabolic profile corresponding to a Poiseuille flow. In general, mixed free and forced convection is observed.

### DETAILS

W. M. Deen, Analysis of Transport Phenomena, New York: Oxford University Press, 1998.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.
 © 2015 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS
 Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX Download or upgrade to Mathematica Player 7EX I already have Mathematica Player or Mathematica 7+