9807

Green's Functions for Diffusion

The Green's function is the response to a delta function source with homogeneous boundary conditions. The delta function models a source that is instantaneously pulsed in time and infinitely concentrated in space. The differential equation governing the one-dimensional diffusion Green's function is
.
The delta source is applied at time at location . The general homogeneous boundary conditions are
For an insulated boundary is obtained. In the limit as , a zero boundary is recovered. Causality in time requires that no response is felt prior to application of a source. Therefore, the initial condition is
for .
The Green's function represents the most basic and fundamental response to any system of differential equations. It can be used to construct the solution to any linear problem subject to arbitrary volumetric sources, boundary conditions, and initial conditions by integrating the Green's function over the appropriate times and locations.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The solution for the Green's function on a finite domain with general boundary conditions is constructed from solutions for an infinite domain using the method of images. In order to see the influence of boundary conditions, place the source point near a boundary and adjust the boundary parameter, .
Snapshot 1: the source point is inside the region, far away from boundaries
Snapshot 2: the source point is near an insulated boundary ()
Snapshot 3: the source point is near a zero potential boundary ( large)
Nomenclature:
= Green's function (1/)
= position (m)
= time (s)
= source location (m)
= source time (s)
= diffusivity (/s)
, = boundary coefficients (1/m)
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+