Discovered in 1983, the Jorge and Meeks -noids are complete minimal surfaces of finite total curvature, topologically equivalent to spheres with points removed, positioned with -fold symmetry. The 2-noid is effectively a catenoid and the 3-noid is also known as the trinoid; the -noids are generalizations of the catenoid.

[1] L. P. Jorge and W. H. Meeks III, "The Topology of Complete Minimal Surfaces of Finite Total Gaussian Curvature," Topology, 22(2), 1983 pp. 203–221.