Mondrian Four-Coloring

Any planar map can be colored with four colors so that no two regions of the same color touch each other.
This Demonstration uses the following method to four-color each map:
1. A map of rectangles is converted to a cubic graph (not shown).
2. Cycle set is a non-unique Hamiltonian cycle. Color its edges with two colors.
3. Eliminate one color of and color the edges that are not in in a third color. The result is a cycle set in two colors.
4. and form the boundaries of two regions and
5. Four cases leads to four possible colors for a rectangle, according to whether it is inside or outside or .
The method does not always work, since some cubic graphs exist that are not Hamiltonian. They are still four-colorable, but not by this method.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Ed Pegg Jr, "Math Games: Square Packing," Dec. 1, 2003.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+