Packed Bed Reactor with Longitudinal Mixing

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

Consider an isothermal packed bed reactor (PBR) in which an irreversible first-order reaction is taking place. The reaction rate is given by , where is the rate constant and is the concentration of species . The reactor's length is . Assume that pure reactant enters at with a concentration . For a closed-closed vessel, the Danckwerts boundary conditions at the two ends of the reactor are and . The turbulent flow of the fluid in the pipe is characterized by the velocity . The concentration profile in this PBR is governed by the following partial differential equation:

[more]

, , and ,

where is a dispersion coefficient (expressed in ), which takes into account longitudinal mixing in the pipe.

Introduce the following dimensionless variables and parameters: , , , , (Péclet number), and (Damköhler number).

The dimensionless governing equation becomes:

.

Assume that we have measured the outlet concentration of species using an appropriate analyzer (e.g. a refractometer). Such data, represented by the red dots in the figure, will have some white noise. This Demonstration estimates the two characteristic parameters of the reactor—the Péclet and the Damköhler numbers—by correlating the experimental data to the dispersion model. To do this, set values for and  as well as the random noise level and let the Demonstration generate "experimental" data. 

The fitted data is shown by the blue curve. The values of the parameters thereby determined are shown in magenta and green. Finally, the root-mean-square deviation (or rmsd, given in ) is computed. This computed value serves as an indication of the goodness of fit. As expected, the higher the noise level, the larger the rmsd (e.g. compare rmsd values in snapshots 2 and 3).

[less]

Contributed by: Housam Binous, Farrukh Shehzad, Mohammad Mozahar Hossain, Abdullah A. Shaikh, and Ahmed Bellagi (January 2016)
(King Fahd University of Petroleum & Minerals, KSA; ENIM, University of Monastir, Tunisia)
Open content licensed under CC BY-NC-SA


Snapshots


Details



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send