9827

Pedal Curves of Conics

The pedal curve of a curve with respect to a point (the pedal point) is the locus of the foot of the perpendicular from to the tangent line of the curve .
Drag the locator (red pedal point) to change the pedal curve of a given conic.
Choose an item from the popup menu to change the type of conic and drag the slider to change its shape.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Generally, the pedal curve of a conic is a bicircular quartic (a fourth-order curve with double absolute points) with a real double point at the pedal point . The point is a node, a cusp, or an isolated double point depending on whether it is outside, on, or inside the conic , respectively.
In special cases, this quartic splits into a pair of lines and a curve of the lower order.
• If is a parabola, splits into the line at infinity and a circular cubic.
• If is an ellipse or a hyperbola and is one of its foci, is a circle. More precisely, the pedal curve splits into the pair of isotropic lines through and a circle.
• If is a parabola and is its focus, is a line. More precisely, the pedal curve splits into the line at infinity, the pair of isotropic lines through , and the tangent line to the parabola at its vertex.
References
[1] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed., Boca Raton: CRC Press LLC, 1998.
[2] G. Salmon, A Treatise on the Higher Plane Curves, New York: Chelsea Publishing Company (reprint), 1960.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+