9814

Roll a Sphere without Changing Orientation to a New Location in Two Straight Rolls

A sphere can be moved to any location with no net change in orientation by rolling without slipping in two straight-line rolls. Rolling a sphere in a straight line a distance of , where is any integer, returns the sphere to its initial orientation. By combining two such rolls, the sphere can be moved to any location.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

J. M. Hammersley proved that three straight-line rolls in the horizontal plane are sufficient to move a sphere to any desired position and orientation, but that three rolls can lead to arbitrarily long paths. In contrast, the total path length needed to move the sphere from a start position to a desired position at a distance away without changing orientation is , where is the ceiling function. The procedure is to first roll the sphere to a desired orientation with two straight-line rolls, and then move the sphere to the desired position with two straight-line moves.
By applying the Demonstration Re-Orient a Sphere with Two Straight Rolls, followed by this Demonstration, a ball can be rolled to any orientation and position in four rolls.
Reference
[1] J. M. Hammersley, "7. Oxford Commemoration Ball," in Probability, Statistics and Analysis: London Mathematical Society Lecture Note Series, No. 79 (J. F. C. Kingman and G. E. H. Reuter, eds.), Cambridge, UK: Cambridge University Press, 1983.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+