# All Roots of Two Systems of Algebraic Equations

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

This Demonstration illustrates how one can use NDSolve's WhenEvent option to determine the roots of a system of nonlinear algebraic equations: and . An attractive feature of the method is that one does not need not need to know at the outset an approximate guess for the roots. All one needs to do is specify the solution domain , .

[more]
Contributed by: Housam Binous, Ahmed Bellagi, and Brian G. Higgins (October 2013)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

The following describes the solution methodology.

First, define . By construction . If is a root of the system , then and . Thus, a necessary condition is given by .

You can solve the differential-algebraic system of equations:

Eq. (1),

Eq. (2).

In doing so, we are solving the ODE given by Eq. (1) along the curve defined in the x-y plane by Eq. (2). A solution to such a problem is always guaranteed for the particular case when the DAE system has index 1, which is equivalent to . We use the built-in *Mathematica* function WhenEvent to obtain the values of (i.e., the candidate roots) that verify the necessary condition . For each value of , we check if the system of equations is indeed verified by calculating . If , that particular candidate solution is simply rejected.

## Permanent Citation