Transient Heat Conduction Using Chebyshev Collocation

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

Consider the one-dimensional heat equation given by


, with and .

This equation represents heat conduction in a rod. The boundary conditions are such that the temperature, , is equal to 0 at both ends of the rod:

and for .

Without loss of generality, one can take the thermal diffusivity, , equal to . The initial condition is given by


The temperature can be found using either NDSolve (solid colored curve) or the Chebyshev collocation technique (colored dots). Both methods give the same results, which are plotted in the same diagram at various values of time, ranging from 0.01 to 0.1 with a span of 0.01. You can set the number of interior points used by the Chebyshev collocation method.


Contributed by: Housam Binous, Brian G. Higgins, and Ahmed Bellagi (April 2013)
Open content licensed under CC BY-NC-SA



In the discrete Chebyshev–Gauss–Lobatto case, the interior points are given by . These points are the extremums of the Chebyshev polynomial of the first kind .

The Chebyshev derivative matrix at the quadrature points, , is an matrix given by

, , for , and for and ,

where for and .

The second-order partial spacial derivatives are obtained using .

An affine transformation, , allows shifting from interval to .


[1] L. N. Trefethen, Spectral Methods in MATLAB, Philadelphia: SIAM, 2000.

Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.