Solving the Convection-Diffusion Equation in 1D Using Finite Differences

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration shows the solution of the convection-diffusion partial differential equation (PDE) in one dimension with periodic boundary conditions. You can specify different initial conditions. Selected preconfigured test cases are available from the dropdown menu.
Contributed by: Nasser M. Abbasi (June 2012)
Open content licensed under CC BY-NC-SA
Snapshots
Details
The convection-diffusion partial differential equation (PDE) solved is , where
is the diffusion parameter,
is the advection parameter (also called the transport parameter), and
is the convection parameter. The domain is
with periodic boundary conditions. Initial conditions are given by
. You can specify
using the initial conditions button. The time step is
, where
is the
multiplier,
is the grid size, and
is the diffusion parameter. You can change the
multiplier using the slider. The total run time of the simulation is specified using the slider labeled "time".
The system solved at each time step is where
is the solution of the PDE. The matrix
is given by
,
where and
. In the above
is taken to be the vector of initial conditions. All values used are assumed to be in SI units.
Reference
[1] S. J. Farlow, Partial Differential Equations for Scientists and Engineers, New York: Dover, 1993.
Permanent Citation