9873

Conway's M(13) Puzzle

John H. Conway introduced this sliding tile puzzle, which bears the same relation to the Mathieu group as Sam Lloyd's famous 15 puzzle bears to the alternating group . ( was one of the first sporadic simple groups to be discovered.) Initially, tiles numbered 1–12 are placed on the same-numbered points of a projective plane of order three, with the point left uncovered. Hovering over a tile reveals the four points in the unique line of the projective plane that connects it to the uncovered point. Clicking the tile executes the sole legal move of the game, which is a double transposition: the clicked tile slides in to the uncovered space, and the other two points on the line exchange positions. The object, of course, is to restore the tiles to their initial order from a scrambled position.
To use the Solve button, make sure the position (at the top of the circle) is open. Clicking the Solve button gives a sequence of numbers that refer to the light-gray point numbers around the outside of the circle. Click those positions in the order indicated, and the puzzle will be returned to its initial state.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The M(13) in the title refers to the pseudogroup of permutations of the 13 tiles (where we think of the open space as simply another tile bearing the number 13) that can be achieved by legal moves in the game. The subset of permutations that leave the point uncovered form a group of 95,040 elements ismorphic to the Mathieu group .
The solver is based on the algorithm described in the following paper (which would be impractical for a human puzzler to use):
J. H. Conway, N. D. Elkies, and J. L. Martin, "The Mathieu Group and Its Pseudo Group Extension ," Experimental Mathematics, 15(2), 2006 pp. 223–236. [PDF]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+