Bifurcation-catastrophe theorists roughly define a catastrophe as a sudden transition resulting from a continuous parameter change. Here are some basic definitions for understanding the fold catastrophe.
1. A critical point

of a differentiable function

of one variable

satisfies

.
2. A nondegenerate critical point

of a differentiable function

of one variable

satisfies

and

; if

and

,

is called a degenerate critical point.
For

and

, there are two nondegenerate critical points; for

, there is one degenerate critical point; and for

, there are no critical points.
[1] V. I. Arnold,
Ordinary Differential Equations (R. A. Silverman, ed. and trans.), Cambridge, MA: MIT Press, 1973.
[2] D. V. Anosov et al, eds.,
Dynamical Systems I: Ordinary Differential Equations and Smooth Dynamical Systems (
Encyclopaedia of Mathematical Sciences, Vol. 1), New York: Springer, 1997.
[3] V. I. Arnold,
Geometrical Methods in the Theory of Ordinary Differential Equations (J. Szücs, trans.; M. Levi, ed.), New York: Springer-Verlag, 1983.
[4] V. I. Arnold,
Mathematical Methods of Classical Mechanics (K. Vogtmann and A. Weinstein, trans.), New York: Springer-Verlag, 1978.
[5] V. I. Arnold, ed.,
Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (
Encyclopaedia of Mathematical Sciences, Vol. 5), New York: Springer, 1994.
[6] V. I. Arnold,
Catastrophe Theory, 3rd ed. (G. S. Wassermann, trans.), New York: Springer-Verlag, 1992.
[7] D. P. L. Castrigiano and S. A. Hayes,
Catastrophe Theory, Reading, MA: Addison-Wesley, 1993.
[8] R. Thom,
Structural Stability and Morphogenesis: An Outline of a General Theory of Models (D. H. Fowler, trans.), Reading MA: Addison-Wesley., 1989.
[9] J. Milnor,
Morse Theory, Princeton, NJ: Princeton University Press, 1963.
[10] Y. Matsumoto,
An Introduction to Morse Theory (
Translations of Mathematical Monographs, Vol. 208) (K. Hudson and M. Saito, trans.), Providence, RI: American Mathematical Society, 2002.
[11] S. H. Strogatz,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Reading, MA: Addison-Wesley, 1994.
[12] S. Wolfram,
A New Kind of Science, Champaign, IL: Wolfram Media, 2002.