10182

# Degenerate Critical Points and Catastrophes: Fold Catastrophe

The simple algebraic curve is a good enough example to explain degeneracy and catastrophe in the extended phase space . With the help of this Demonstration, students can easily understand the fold catastrophe.

### DETAILS

Bifurcation-catastrophe theorists roughly define a catastrophe as a sudden transition resulting from a continuous parameter change. Here are some basic definitions for understanding the fold catastrophe.
1. A critical point of a differentiable function of one variable satisfies .
2. A nondegenerate critical point of a differentiable function of one variable satisfies and ; if and , is called a degenerate critical point.
For and , there are two nondegenerate critical points; for , there is one degenerate critical point; and for , there are no critical points.
References
[1] V. I. Arnold, Ordinary Differential Equations (R. A. Silverman, ed. and trans.), Cambridge, MA: MIT Press, 1973.
[2] D. V. Anosov et al, eds., Dynamical Systems I: Ordinary Differential Equations and Smooth Dynamical Systems (Encyclopaedia of Mathematical Sciences, Vol. 1), New York: Springer, 1997.
[3] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (J. Szücs, trans.; M. Levi, ed.), New York: Springer-Verlag, 1983.
[4] V. I. Arnold, Mathematical Methods of Classical Mechanics (K. Vogtmann and A. Weinstein, trans.), New York: Springer-Verlag, 1978.
[5] V. I. Arnold, ed., Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (Encyclopaedia of Mathematical Sciences, Vol. 5), New York: Springer, 1994.
[6] V. I. Arnold, Catastrophe Theory, 3rd ed. (G. S. Wassermann, trans.), New York: Springer-Verlag, 1992.
[7] D. P. L. Castrigiano and S. A. Hayes, Catastrophe Theory, Reading, MA: Addison-Wesley, 1993.
[8] R. Thom, Structural Stability and Morphogenesis: An Outline of a General Theory of Models (D. H. Fowler, trans.), Reading MA: Addison-Wesley., 1989.
[9] J. Milnor, Morse Theory, Princeton, NJ: Princeton University Press, 1963.
[10] Y. Matsumoto, An Introduction to Morse Theory (Translations of Mathematical Monographs, Vol. 208) (K. Hudson and M. Saito, trans.), Providence, RI: American Mathematical Society, 2002.
[11] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Reading, MA: Addison-Wesley, 1994.
[12] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media, 2002.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.