Primitive Pythagorean Triples on a Curvilinear Grid Defined by Euclid's Formula

A primitive Pythagorean triple is a set of values satisfying the Pythagorean theorem , with no common factors, . The triples can be rewritten using Euclid's formula as with and coprime and odd to ensure that the triples are primitive. The primitive triples are represented by their corresponding triangles, scaled and translated to the intersection of the curves for each value , , in the centroid of the triangle. Empty intersections occur where the triple is not primitive.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Let and . Each blue curve is given parametrically by for fixed ; different values of give different blue curves. The blue curves shown correspond to integer choices of . Similarly, each red curve is given parametrically by for fixed ; different values of give different red curves. The red curves shown correspond to integer choices of .
[1] Wikipedia. "Pythagorean triple." (Sep 26, 2012) en.wikipedia.org/wiki/Pythagorean_triple.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+