9813

Scalar Feynman Diagrams and Symanzik Polynomials

This Demonstration allows the construction of an arbitrary Feynman graph and displays its position space, momentum space, or parametrized amplitude. For simplicity, it assumes a Euclidean scalar field theory with dimensional regularization and only allows single powers of the propagators. External momenta can be toggled on and off and are always considered incoming. Edge contraction and deletion are available by clicking an edge in the left-hand panel. In particular, the sequence of two-loop propagator graphs in the bookmarks is obtained via successive edge contractions of the highest numbered edge.
The principal purpose of this Demonstration is the calculation of the Symanzik polynomials for arbitrary scalar graphs. These are used in both the Feynman and Schwinger parametrizations of a graph's amplitude.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

This Demonstration allows the construction of an arbitrary Feynman graph and displays its position space, momentum space, or parametrized amplitude. It assumes a Euclidean, scalar quantum field theory in dimensions and that each propagator can have a different mass. Much of the Demonstration works for arbitrary graphs, but the most interesting are those that are connected and one-particle irreducible.
External propagators are not drawn in the graph; rather, vertices are flagged if they have incoming external momentum. The total external momentum is assumed to be conserved. Vertices are added and deleted by command-clicking in the vertex pane; they can be moved by clicking and dragging. Edges are added by activating the appropriate toggle, then clicking the two vertices to be joined. All other changes to the edges and vertices can be made in the popup menus of the left-hand panel. Information about the Feynman graphs selected in the lower left-hand menu and is displayed in the bottom pane. All graph data is printable from the supplied menus for use in other programs and calculations. Most objects in the Demonstration have tooltips describing their use.
Consider a graph with edges, vertices, and external edges connected to external vertices; the assumption that external vertices have only one external edge affects only the expression for the position-space amplitude but is easily remedied. Index the edges from to , where the final are the external edges. Similarly index the vertices. If we introduce the incidence matrix , then the Feynman amplitude associated with the graph is
.
Note that , where and are the beginning and ending points of the edge indexed by .
Taking the Fourier transform and truncating the external propagators gives the corresponding momentum space amplitude
.
The external momenta are always considered as incoming and are associated with the external edge that is connected to the vertex at . The -functions combine to give conservation of total external momentum (a factor of ) and the rest can be integrated leaving (for a connected graph) momentum integrals; is the number of independent loops in the graph.
The momentum space amplitude can then be written in either Feynman parameters
or Schwinger parameters (also known as proper-time or -parameters)
,
where and are the Symanzik polynomials. The first Symanzik polynomial (also known as the Kirchhoff–Symanzik polynomial) is homogeneous in of order and can be written as a sum-product over the trees of the graph: , where the denote the edges. The second Symanzik polynomial is a quadratic form in the external momenta and is homogeneous in of order . It can be expanded over the two-trees (two-component spanning forests) of the graph: , where is the total momentum squared flowing into either of the connected components of the two-tree. Total momentum conservation means that it does not matter which component is chosen.
Some good references are
N. Nakanishi, Graph Theory and Feynman Integrals, Newark, NJ: Gordon and Breach, 1971.
V. A. Smirnov, Evaluating Feynman integrals, New York: Springer, 2004.
C. Itzykson and J.–B. Zuber, Quantum Field Theory, New York: McGraw–Hill, 1980.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+