Shortest Path between Two Points on a Sphere

The shortest path between two points on the surface of a sphere is an arc of a great circle (great circle distance or orthodrome). On the Earth, meridians and the equator are great circles. Between any two points on a sphere that are not directly opposite each other, there is a unique great circle. The two points separate the great circle into two arcs and the length of the shorter arc is the shortest path between the two points. Points are given by their latitude and longitude.
Le chemin le plus court entre deux points à la surface d'une sphère est un arc de grand cercle (distance à vol d'oiseau). Sur Terre, les méridiens et l'équateur sont des grands cercles. Sur une sphère, entre deux points quelconques qui ne sont pas directement opposés, ne passe qu'un seul grand cercle. Ces deux points divisent ce grand cercle en deux arcs et la longueur du plus petit de ces arcs est la plus courte distance entre ces deux points. La position des points est donnée par leur latitude et leur longitude en degré.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Related Curriculum Standards

US Common Core State Standards, Mathematics

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+