Stationary States in a Nonisothermal Continuous Stirred-Tank Reactor

This Demonstration analyzes the single-step reaction in a nonisothermal continuous well-stirred tank reactor (CSTR) where is the heat of reaction. The rate of reaction is first order in the concentration of species , so that , and the rate constant has an Arrhenius temperature dependence: . Heat is removed from the reactor using a cooling coil that has an overall heat transfer coefficient and surface area . The Demonstration shows the complex steady states (expressed as plots of temperature versus , and conversion fraction versus ) that can occur in the reactor as the residence time and the heat transfer parameter are varied. The possibilities include a unique steady state and multiple steady states, as well as the birth and death of an isola (or island), which is a region in the solution space described by a closed loop.
You can study the dynamics of the reactor by varying the initial temperature for the reactor . When multiple steady states are present, each stable steady state will have a zone of attraction that you can explore by changing


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The dynamics of the nonadiabatic CSTR are described by the following mass and energy balances [1]:
subject to the initial conditions , .
[1] P. G. Gray and S. K. Scott, Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics, Oxford: Claredon Press, 1994.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+