Wente Torus

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

In 1894, Henry Wente discovered the Wente torus, an immersed torus of constant (but not zero) mean curvature. Such constant mean curvature (CMC) surfaces are counterexamples to Hopf's conjecture that a sphere is the only closed surface with constant mean curvature that is compact [1]. The set of all symmetric tori is in one-to-one correspondence with the set of reduced fractions ; each corresponds to a symmetric Wente torus labeled as [2].

Contributed by: Enrique Zeleny (June 2014)
Open content licensed under CC BY-NC-SA


Snapshots


Details

References

[1] H. C. Wente, "Counterexample to a Conjecture of H. Hopf," Pacific Journal of Mathematics, 121(1), 1986 pp. 193–243. projecteuclid.org/euclid.pjm/1102702809.

[2] Marija Ćirić, "Notes on Constant Mean Curvature Surfaces and Their Graphical Presentation," Filomat 23(2), 2009 pp. 97–107. www.pmf.ni.ac.rs/pmf/publikacije/filomat/2009/23-2-2009/Paper10.pdf.

[3] M. Heil. CMC: Pictures of Constant Mean Curvature Tori [Video]. (Jun 16, 2014) www.youtube.com/watch?v=7rnsdcS7qGU.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send