# A Concurrency from Circumcircles of Subtriangles

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

Let ABC be a triangle and let the incircle intersect BC, CA, and AB at A', B', and C', respectively. Let the circumcircles of AB'C', A'BC', and A'B'C intersect the circumcircle of ABC (apart from A, B, and C) at A'', B'', and C'', respectively. Then A'A'', B'B'', and C'C'' are concurrent.

Contributed by: Jay Warendorff (March 2011)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

See Four Circles—a problem from the Canadian Mathematical Olympiad 2007.

## Permanent Citation

"A Concurrency from Circumcircles of Subtriangles"

http://demonstrations.wolfram.com/AConcurrencyFromCircumcirclesOfSubtriangles/

Wolfram Demonstrations Project

Published: March 7 2011