# Absorption with Chemical Reaction in a Semi-Infinite Medium

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

Consider the unsteady-state absorption with a chemical reaction in a semi-infinite medium. The governing equation is:

[more]
Contributed by: Housam Binousand Brian G. Higgins (June 2013)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

In the discrete Chebyshev–Gauss–Lobatto case, the interior points are given by . These points are the extrema of the Chebyshev polynomials of the first kind, .

The Chebyshev derivative matrix at the quadrature points is an matrix given by

, , for , and for , , and ,

where for and .

The matrix is then used as follows: and , where is a vector formed by evaluating at , , and and are the approximations of and at the .

References

[1] P. Moin, *Fundamentals of Engineering Numerical Analysis*, Cambridge, UK: Cambridge University Press, 2001.

[2] L. N. Trefethen, *Spectral Methods in MATLAB*, Philadelphia: SIAM, 2000.

[3] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, *Transport Phenomena*, 2nd ed., New York: John Wiley & Sons, 2002.

[4] P. V. Danckwerts, "Absorption by Simultaneous Diffusion and Chemical Reaction," *Transactions of the Faraday Society*, 46, 1950 pp. 300–304. doi:10.1039/TF9504600300.

## Permanent Citation

"Absorption with Chemical Reaction in a Semi-Infinite Medium"

http://demonstrations.wolfram.com/AbsorptionWithChemicalReactionInASemiInfiniteMedium/

Wolfram Demonstrations Project

Published: June 17 2013