9887

Absorption with Chemical Reaction in a Semi-Infinite Medium

Consider the unsteady-state absorption with a chemical reaction in a semi-infinite medium. The governing equation is:
,
where and are the diffusion coefficient and first-order reaction rate constant, respectively.
The initial and boundary conditions are:
, ,
, ,
, ,
where is the saturation concentration and is the position.
This problem admits an analytical solution [4] given by:
.
The rate of absorption is given by [4]:
.
This Demonstration plots the solution , as well as the rate of absorption versus time. The numerical solution obtained using the Chebyshev orthogonal collocation is given by the red dots. The analytical solution is given by the blue curve. The numerical rate of absorption is shown with a red curve. The analytical rate of absorption is given by the blue dashed curve. Excellent agreement between both solutions is observed.
You can vary the values of , , and as well as the number of Chebyshev collocation points, .

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

In the discrete Chebyshev–Gauss–Lobatto case, the interior points are given by . These points are the extrema of the Chebyshev polynomials of the first kind, .
The Chebyshev derivative matrix at the quadrature points is an matrix given by
, , for , and for , , and ,
where for and .
The matrix is then used as follows: and , where is a vector formed by evaluating at , , and and are the approximations of and at the .
References
[1] P. Moin, Fundamentals of Engineering Numerical Analysis, Cambridge, UK: Cambridge University Press, 2001.
[2] L. N. Trefethen, Spectral Methods in MATLAB, Philadelphia: SIAM, 2000.
[3] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., New York: John Wiley & Sons, 2002.
[4] P. V. Danckwerts, "Absorption by Simultaneous Diffusion and Chemical Reaction," Transactions of the Faraday Society, 46, 1950 pp. 300–304. doi:10.1039/TF9504600300.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+