9873

Second-Order Reaction with Diffusion in a Liquid Film

Gas absorption is often enhanced by a chemical reaction. For instance, acid gases ( and ) are usually eliminated from natural gas by absorption using ethanolamine () as a basic solvent.
Consider the absorption of species with a solvent containing a species such as a second-order irreversible chemical reaction, , that takes place in a liquid film. Only species is present in the gas phase since has a very low vapor pressure (i.e., is a high boiling component). Species is not present in the bulk liquid since all of reacts with component in the liquid film.
he steady state material balances within the film are given by and , where the binary diffusion approximation for and in has been used. These equations simply state that the rates of diffusion of species and are equal to the rate of the chemical reaction. The concentration of in the bulk liquid is arbitrarily set to 2 while the concentration of at the gas-liquid interface is set to 1.
This Demonstration displays the liquid film concentrations of species and (blue and orange curves, respectively) as a function of position. You can change the values of the diffusivities, and , the reaction rate constant, , as well as the number of Chebyshev collocation points, . Excellent agreement is obtained between the numerical solutions given by Chebyshev orthogonal collocation (blue and orange dots) and by NDSolve (blue and orange curves).

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

In the discrete Chebyshev–Gauss–Lobatto case, the interior points are given by . These points are the extrema of the Chebyshev polynomials of the first kind, .
The Chebyshev derivative matrix at the quadrature points is an matrix given by
, , for , and for and ,
where for and .
The matrix is then used as follows: and , where is a vector formed by evaluating at , , and and are the approximations of and at the .
References
[1] P. Moin, Fundamentals of Engineering Numerical Analysis, Cambridge, UK: Cambridge University Press, 2001.
[2] L. N. Trefethen, Spectral Methods in MATLAB, Philadelphia: SIAM, 2000.
[3] M. B. Cutlip and M. Shacham, Problem Solving in Chemical Engineering with Numerical Methods, Upper Saddle River, NJ: Prentice Hall, 1999.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+