9826

Applications of Driving-Force and McCabe-Thiele Diagrams to Binary Distillation Processes

The driving-force diagram for a constant relative volatility binary mixture is obtained by plotting versus , where and are the liquid and vapor mole fractions of the light component. Explicitly, the driving force is , where is the relative volatility.
Two case are treated in the present Demonstration.
Optimal case: The curve obtained is concave and one can easily find the location of the maximum point (i.e. magenta point ). Let us take a saturated liquid feed with a composition given by the abscissa of the magenta point . The line is the locus of the points of intersections for the operating lines corresponding to the largest actual driving force. Thus, if the feed plate is located on the line , the resulting design will minimize the operating cost of the distillation column (it simultaneously minimizes the reboil and reflux ratios). If the reflux ratio is equal to , then the operating lines, shown in light blue, intersect at . The slope of the two light blue lines are identical, which means that the minimum reflux and reboil ratios are equal. For , the operating lines are drawn in blue. The slope of the operating lines in the driving-force diagram can be easily related to the reboil and reflux ratios. If these operating lines intersect exactly at , then their slope is zero and we have the total reflux situation—this corresponds to operating lines in the McCabe–Thiele diagram given by the line .
Non-optimal case: Let us take a saturated liquid feed with a composition, , to be set by the user. If the reflux ratio is equal to , then the operating lines, shown in light blue, intersect at . For , the operating lines are drawn in blue. The slope of the operating lines in the driving-force diagram can be easily related to the reboil and reflux ratios.
This Demonstration plots the driving-force diagram, the operating lines for and . You can change the value of the relative volatility of the mixture. The McCabe–Thiele diagram is also given. Finally, the minimum reflux ratio is computed in the program by two methods: (1) using the intersection of the feed line and the equilibrium curve, which is the classical McCabe–Thiele method, and (2) using the slope of the light blue operating lines in the driving-force diagram. Both methods give the same result for the minimum reflux ratio.
Finally, for the optimal case, the optimal feed location is calculated using the McCabe–Thiele diagram as well as the driving-force diagram. For the later approach, one has the following relationship: , where the stages are counted from the top and is the abscissa of .
For lower values of , the value of will be higher. Indeed, the separating driving force is smaller and the cost of the distillation will go up.
In this Demonstration, it is assumed that distillate and bottom specifications are and mole %, respectively
In order to compare the optimal and non-optimal cases, let us consider the non-optimal case with abscissa of the magenta point . Then, the reboil ratio goes up while the reflux ratio goes down if they are compared to the reflux and reboil ratios of the optimal case. The overall effect is an increase in the operating cost of the reboiler and the condenser (i.e., heat duty). Similarly, when abscissa of the magenta point , the reboil ratio goes down while the reflux ratio goes up when compared to their counterparts in the optimal case. Again, the overall effect is an increase in the operating cost of the reboiler and the condenser (i.e., heat duty).
  • Contributed by: Housam Binous
  • (Kind Fahd University Petroleum & Minerals)

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

References
[1] R. Gani and E. Bek–Pedersen, "Simple New Algorithm for Distillation Column Design," AIChE Journal, 46(6), 2000 pp. 1271–1274.
[2] E. Bek–Pedersen, R. Gani, and O. Levaux, "Determination of Optimal Energy Efficient Separation Schemes Based on Driving Forces," Computers and Chemical Engineering, 24(2–7), 2000 pp. 253–259.
[3] E. Bek–Pedersen and R. Gani, "Design and Synthesis of Distillation Systems Using a Driving-Force-Based Approach," Chemical Engineering and Processing, 43(3), 2004 pp. 251–262.
[4] W. L. McCabe and E. W. Thiele, "Graphical Design of Fractionating Columns," Industrial and Engineering Chemistry 17(6), 1925 pp. 605–611.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+