Interleaving Theorems for the Rayleigh-Ritz Method in Quantum Mechanics

The Rayleigh–Ritz variational method has been well known in mathematics for well over a century. Its application to quantum mechanics was definitively described by J. K. L. MacDonald in Phys. Rev. 43(10), 1933 pp. 830–833. The eigenfunctions of a quantum-mechanical Hamiltonian can be approximated by a linear combination of basis functions. This gives an secular equation with roots, approximating the lowest eigenvalues. Two interleaving theorems can be proven: (1) between each pair of successive roots of the secular equation, augmented by and , there occurs at least one exact eigenvalue; (2) if is increased to , then the new approximate roots will be interleaved by the previous ones. As a corollary to (1), often called simply "the" variational principle, the lowest approximate eigenvalue provides an upper bound to the exact ground-state eigenvalue.
In this Demonstration, the Rayleigh–Ritz method is applied to two simple quantum-mechanical problems—the hydrogen atom and the linear harmonic oscillator. For the hydrogen atom, the energy scale is distorted from the actual rapidly-converging spectrum. These are somewhat artificial problems in the sense that exact ground-state eigenvalues can be obtained with the exponential coefficients . But for , one can pretend that exact solutions are not available.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+