Levich Equation for Rotating Disk Electrode

The Levich equation models the variation of diffusion and solution flow around a rotating disk electrode (RDE). This Demonstration shows the dependence of the current on the rotation speed.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


In a rotating disk electrode, the electrolytes are made to flow past the electrode by convection. In this Demonstration, when the rotation speed increases, the flux of electroactive species to the surface of the electrode increases by convection (shown by the red arrow) and the current increases.
The Levich equation predicts the current observed at a rotating disk electrode and shows that the current is proportional to the square root of rotation speed. The equation is
, where
is the current limited in voltammogram (A),
is the number of electrons transferred,
is the Faraday constant (C/mol),
is the electrode area (),
is the diffusion coefficient /s),
is rotation speed (radian/sec),
is the kinematic viscosity of the solution /sec), and
is the concentration of the electroactive species ).
The Levich equation can be used to calculate the diffusion coefficient as a function of the rotation speed and the current .
[1] J. Wang, Analytical Electrochemistry, 3rd ed., New York: John Wiley & Sons, 2006.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+