Gaussian Laser Modes

This Demonstration considers the intensity distribution of Hermite-Gaussian transverse
electromagnetic (TEM) modes produced by a laser. These modes are solutions of the paraxial wave equation in Cartesian coordinates. They represent the transverse (-) intensity distribution of a laser beam propagating in the direction.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The Hermite-Gaussian modes
are an important family of solutions of the paraxial wave equation
that describes the optical field, that is, the amplitude of the electric field in a laser beam propagating along . The transverse (-) intensity distribution of the beam is given by
In the above, is the phase of the beam, which is irrelevant when discussing the intensity and is called the beam radius. As the beam propagates changes in a characteristic manner. However, as seen from the expressions above, acts as a scaling parameter, so that the transverse beam pattern does not change along the propagation direction; it merely changes its scale, shown in this Demonstration for .
By setting
the integrated intensity is normalized to yield unit power


    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+