10658
EXPLORE
LATEST
ABOUT
AUTHORING AREA
PARTICIPATE
Your browser does not support JavaScript or it may be disabled!
Nomogram for the Geometric Mean
The Demonstration illustrates a nomogram to calculate the geometric mean using the identity
. To get
, drag the red points for
and
.
Contributed by:
Izidor Hafner
THINGS TO TRY
Drag Locators
Slider Zoom
Gamepad Controls
Automatic Animation
SNAPSHOTS
RELATED LINKS
Geometric Mean
(
Wolfram
MathWorld
)
Nomogram
(
Wolfram
MathWorld
)
Nomography for Beginners
(
Wolfram Demonstrations Project
)
Nomogram of p and s Reflectances for an Ambient-Film-Substrate System
(
Wolfram Demonstrations Project
)
PERMANENT CITATION
Izidor Hafner
"
Nomogram for the Geometric Mean
"
http://demonstrations.wolfram.com/NomogramForTheGeometricMean/
Wolfram Demonstrations Project
Published: September 28, 2012
Share:
Embed Interactive Demonstration
New!
Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site.
More details »
Download Demonstration as CDF »
Download Author Code »
(preview »)
Files require
Wolfram
CDF Player
or
Mathematica
.
Related Demonstrations
More by Author
Possible Calculation of Logarithms of Cosines in Vlacq's Trigonometria Artificialis
Izidor Hafner
Calculating Logarithms with a Series
Izidor Hafner
Euler's Estimate of Pi
Izidor Hafner
Vega's Second Calculation of Pi
Izidor Hafner
Du Plantier's Square Root Extractor
Izidor Hafner
Using a Nomogram
Izidor Hafner
Iteration Methods for Solving Kepler's Equation
Ulrich Mutze
Proofs Using a Quadrature Method of Archimedes
Jenda Vondra
Archimedes' Approximation of Pi
John Tucker
Classical Approximations of Pi
Rob Morris
Related Topics
Approximation Methods
Historical Mathematics
Browse all topics
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to
Mathematica Player 7EX
I already have
Mathematica Player
or
Mathematica 7+