Particle in an Infinite Spherical Well

A particle of mass in an infinite spherical potential well of radius is described by the Schrödinger equation . The wavefunction is separable in spherical polar coordinates, such that , where is a spherical harmonic, a spherical Bessel function, and is a normalization constant. The boundary condition that at is fulfilled when is the zero of the spherical Bessel function . The quantized energy levels are then given by and are -fold degenerate with . The conventional code is used to label angular momentum states, with representing . Unlike atomic orbitals, the -values are not limited by ; thus one will encounter states designated , etc.
This Demonstration shows contour plots on a cross section of the sphere for the lower-energy eigenfunctions with and . For , the eigenfunctions are complex. In all cases, the real parts of are drawn. The wavefunction is positive in the blue regions and negative in the white regions. You can also view an energy-level diagram, with each dash representing the degenerate set of eigenstates for given .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshots 1–3: the three lowest energy states
Snapshot 4: energy-level diagram
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+