Space-Quantization of Angular Momentum

The commutation relations for angular momentum in quantum mechanics are given by , , with cyclic permutations. From these, the allowed values of quantized angular momentum can be derived, namely, and , with , . Customarily, the component is singled out, with the other two components retaining indefinite or fluctuating values (except when . The definite magnitude and direction of one component of angular momentum is known as "space quantization". Restriction of to integer values was exploited in Bohr's model of the hydrogen atom. When spin is involved, and can also take half-integer values.
The vector model of angular momentum pictures the total angular momentum vector as precessing about its constant component. This is also consistent with the fluctuating values of and .
The fact that the quantized value of equals , rather than , can be rationalized by the fact that the average value of the sum of the squares of the three components is given by .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Reference: S. M. Blinder, Introduction to Quantum Mechanics, Amsterdam: Elsevier, 2004 pp. 83–85.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+