10217

# Pascal-like Triangles Made from a Game

The triangle of fractions has properties that makes it very similar to Pascal's triangle: suppose two adjacent fractions in the same row are and . Then the fraction below them is , which is how the fractions and are added in the Farey sequence.
Let , , be fixed natural numbers such that . There are players seated in a circle. The game begins with the first player. Proceeding in order, a box is passed from hand to hand. The box contains red cards and white cards. When a player gets the box, he draws a card from it. Once a card is drawn, it is not returned to the box. If a player draws a red card, he loses and the game ends. Let be the probability that the player loses the game. Then for fixed numbers and with , the numbers form a Pascal-like triangle.

### DETAILS

Originally this game was studied as a game of Russian roulette.
For the mathematical background see T. Hashiba, Y. Nakagawa, T. Yamauchi, H. Matsui, S. Hashiba, D. Minematsu, M. Sakaguchi, and R. Miyadera, "Pascal-like Triangles and Sierpinski-like Gaskets," Visual Mathematics: Art and Science Electronic Journal of ISIS-Symmetry [online], 9(1), 2007.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.