Projections of the Four-Cube

Rotate a four-dimensional cube and project it into three-dimensional graphics. The rotation is the composite of rotations in the w-x, w-y, and w-z planes, in that order. Opposite cubes (3-cells) of the hypercube have similar colors. Play with the opacity to see how the hypercube is bounded by eight cubes.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The rotation of the hypercube, whose vertices have coordinates each ±1, is the composite of rotations in the w-x, w-y, and w-z planes, in that order. Combined with Mathematica's built-in rotation of 3D graphics, this gives all six degrees of freedom of four-dimensional rotations. The bounding cubes are drawn in the order from least w coordinate to greatest. If all the opacities are set to one, the display shows the cubes "visible" looking from out on the positive w axis. The projection is accomplished by dropping the w coordinate; therefore it is a parallel projection, although the projection onto the screen has the default perspective of Mathematica 3D graphics. The positive x, y, z, w axes of the hypercube may be shown; these rotate with the hypercube, which helps illustrate how the rotations work.
Snapshot 1: a pair of opposite cubes
Snapshot 2: two pairs of opposite cubes
Snapshot 3: a variation on a classic projection of the hypercube
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+