Quantum Revivals

Quantum revivals are recurrent forms of wave packets [1] that, in the course of their evolution, return to their initial form after a certain "revival time". This Demonstration shows the propagation of a particle in a one-dimensional box of length 1 with Dirichlet boundary conditions. The coordinate runs on the horizontal axis and the vertical axis is . The probability density has interesting fractal properties [2] due to the wave function's self-interference resulting from the boundary conditions. Revivals of this type appear in many fields of physics.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The wave function can be represented by the infinite series
which is approximated by terms.
[1] M. V. Berry, I. Marzoli, and W. Schleich, "Quantum Carpets, Carpets of Light," Physics World, 14(6), 2001 pp. 39–44.
[2] M. V. Berry, "Quantum Fractals in Boxes," Journal of Physics: A Mathematical and General, 29, 1996 pp. 6617–6629. doi:10.1088/0305-4470/29/20/016.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+