Solution and Stability of a 1-Periodic Differential Equation

Consider an equation of the form
where is periodic with period 1, that is, . The particular function that we examine is taken from [1]:
Because the differential equation is non-autonomous in , the solution trajectory, denoted by , depends on both and .
By selecting the "time trajectory" tab and varying the sliders and , you can explore the solution's dependence on these two parameters. In all cases the solution approaches a 1-periodic solution , that is:
as .
Another interesting property of 1-periodic equations is
By selecting "amplitude shifted" and varying the sliders , , and , you can examine how the trajectory is affected by comparing it with . As noted earlier, all trajectories ultimately approach a 1-periodic state.
By selecting "time-amplitude shifted" and taking , you can see that the trajectories and are simply translates of each other in time.
By integrating the 1-periodic differential equation in time, the solution trajectory always approaches a periodic state, if that state is stable. It turns out for this 1-periodic equation that there is another 1-periodic state, but it is not stable and so cannot be found by time integration. One method for investigating the family of periodic states is to examine the Poincaré map drawn from the solution trajectories. By selecting "Poincaré map", you can examine the Poincaré map for the differential equation. You can vary the iterations on the map with the slider The map is constructed by finding the iterates of
The intersection of the Poincaré map with the line gives the fixed points for the map. In this case there are two fixed points that are 1-periodic solutions to the differential equation. The intersection near is an unstable fixed point. The stability of a fixed point can be deduced from the slope of the Poincaré map at the intersection point or by computing the Floquet exponents, which is done in this Demonstration. Negative exponents represent stable solutions.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The example used in this Demonstration is adapted from [1].
The idea of a Poincaré map is to take an arbitrary initial value at and map it to the value of the solution at , which is . We represent the map as
Then the iterate of the map is given by
The intersection of with defines the fixed points of the Poincaré map. The fixed points (periodic solutions) of the Poincaré map are solutions to
The stability of a fixed point is found by determining the Floquet exponents (using Floquet theory):
[1] J. H. Hubbard and B. H. West, Differential Equations: A Dynamical Systems Approach, New York: Springer, 1991.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+