11284

Torsional Pendulum Suspended by Two Stranded Wires

This Demonstration simulates a variation of the classic torsional pendulum.
A disk hangs on a strand of two wires. The disk is given an initial angular displacement and released from rest, resulting in a harmonic motion similar to that of a torsional pendulum.
The potential energy of this system changes cyclically due to the variation in length of the strand, from the twisting and untwisting of the wires.
The changes in potential energy are compensated by changes in the kinetic energy of the rotating disk, with the total energy of the system remaining constant.
Friction between the wires and air drag are not considered.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

This system has one degree of freedom, , the angular displacement of the suspended disk at time .
The potential energy of the system is .
is the effective length of the strand after twisting by the angle : , where
is the length of the untwisted strand, and
is the radius of the strand or the distance between the wires.
The kinetic energy of the system is , where
is the mass of the disk,
is the radius of the disk,
is the width of the disk, and
is its density.
The Lagrangian of this system is .
Substituting this in the Euler–Lagrange equations for gives:
,
.
This results in the equation of motion:
.

RELATED LINKS

    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+