Visible Divisibility Tests

Most people are familiar with the test for divisibility by 3: add up all the digits and check whether the result (the digit sum) is divisible by 3. Other divisibility tests are less well known, such as alternately adding and subtracting digits to test for divisibility by 11. This Demonstration implements divisibility tests for dividing by 2, 3, …, 11. In all cases the rule is given and a step-by-step application shown, either in "Long" or "Brief" form. The radio buttons choose which test to apply and the slider selects the number to test. (Clicking the "+" sign by the slider opens another panel where numbers can be entered directly or incremented/decremented.)


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


There are other available divisibility tests in the literature; see the MathWorld link below for a good introduction. The immediate impetus to create this Demonstration came from a rereading of Paul M. Cohen's short article "Divisibility Tests Remembered," Focus, 23(8), 2003 p. 8. I am indebted to him for the "Brief" notation used in this Demonstration and for reminding me of the fascination of these techniques.
Note: In some of these implementations it is possible to arrive at a negative number in the course of the iteration, and so I have always taken the absolute value of the results where this is a possibility. In a similar vein, the value produced by the divisibility by 6 algorithm is actually the negative of that found by the algorithm described on the MathWorld page, but it seemed easier to do it mentally this way, and we are taking the absolute value so we are free to use either one. (Caution: This means that is not necessarily equal to , but the remainder was not preserved by the 7-rule anyway, so the loss is not great. Whether the remainder is zero or not is preserved.)
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+