Reducing a Differential Equation of a Special Form to a Homogeneous Equation

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration shows the reduction of a differential equation of the form to a homogeneous differential equation of the form
. This case occurs if the system of linear equations
,
has a unique solution
,
; then new variables are introduced by the equations
,
. If the system of linear equations has no solution or has infinitely many solutions, the differential equation reduces to an equation with separable variables.
Contributed by: Izidor Hafner (May 2014)
Open content licensed under CC BY-NC-SA
Snapshots
Details
The equation is called homogeneous if
and
are homogeneous functions of
of the same order. The equation can be reduced to the form
. A function
is called homogeneous of order
if
. An example:
and
are homogeneous of order 2, and
is homogeneous of order 0.
The differential equation is not homogeneous in the usual sense of a linear differential equation having a right-hand side equal to zero, like
.
References
[1] V. I. Smirnoff, Lectures in Higher Mathematics (in Russian), Vol. 2, Moscow: Nauka, 1967 pp. 19–21.
[2] L. E. Eljsgoljc, Differential Equations and Variational Calculus (in Russian), Moscow: Nauka 1969 pp. 26–27.
Permanent Citation