9873

Convection-Diffusion in a Semi-Infinite Region

The dimensionless concentrations ( is surface concentration []) in a semi-infinite region are plotted (steady state in orange, transient in blue) up to the space coordinate [].
Only one slider is used to adjust the parameters: space [], time [], the flow velocity [], the hydrodynamic dispersion coefficient [] ( is dispersivity []), the first-order reaction rate [], and the frame length [].
The model is described by the partial differential equation subject to the conditions , , .
For a fixed time parameter, the space determines black points on the orange curve and on the blue curve , so that you can see the corresponding numerical values. Smilarly for any parameter the precise values of the steady state and transient dimensionless concentrations are available.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The solution programmed includes all possible special cases. The general case is given by Bear and used to compute multispecies transport problems by Sun, et al.
J. Bear, Hydraulics of Groundwater, New York: McGraw-Hill, 1979.
Y. Sun, J. N. Petersen, T. P. Clement, and R. S. Skeen, "Development of Analytical Solutions for Multispecies Transport with Serial and Parallel Reactions," Water Resources Research, 35(1), 1999 pp. 185–190.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+