Enzymatic Reaction in a Batch Reactor

Consider the following reaction scheme: , where is the substrate, is an enzyme catalyst, is the enzyme-substrate complex, which decomposes to give the product , and is the enzyme. This enzymatic reaction takes place in a batch reactor and the governing differential-algebraic system of equations is:
The initial conditions are: , , , and
These equations can be solved using the Mathematica built-in function, NDSolve. This approach is the rigorous one.
Another method, called the quasi-steady-state assumption, considers that . The resulting governing equations are:
, where .
This model is referred to as Michaelis-Menten kinetics. An analytical solution is possible for this model and is given by:
The reaction rate constants , , and are expressed in , and , respectively.
This Demonstration shows the substrate concentration, [S], (red curve) and the product concentration, [P], (blue curve) versus time obtained using the exact approach. The bold dots correspond to the quasi-steady-state approach. Agreement between both methods is obtained and justifies the utilization of the pseudo-steady-state hypothesis, which is also called the quasi-steady-state approach.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Reference: M. B. Cutlip and M. Shacham, Problem Solving in Chemical Engineering with Numerical Methods, Upper Saddle River, NJ: Prentice Hall, 1999.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+