9716

Kermack-McKendrick Epidemic Model with Time Delay

This Demonstration solves a system of three differential equations with time delays, corresponding to a Kermack–McKendrick epidemic model.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The Kermack–McKendrick model simulates the number of people infected with a contagious illness in a closed population over time. It assumes that the population size is fixed, that the incubation period of the infectious agent is instantaneous, and that the duration of infectivity is the same as the duration of the disease. This model is modified by incorporating a delay time representing the period for incubation, which is the time during which infectious agents develop in the vector; only after that time does the infected vector itself becomes infective, and a delay time for the duration of the infectivity. The model consists of three coupled delay ordinary differential equations and three initial history functions.
,
,
,
.
Here is time, is the number of susceptible people, is the number of infected people, is the number of people who have recovered and developed immunity to the infection, is the infection rate, is the recovery rate, is the incubation period, and is the duration of infectivity. The infection and recovery rates are assumed to be equal to 1. The delay equations are solved using Mathematica's built-in function NDSolve and the results are shown as plots of the number of people in each group versus time and in a three-dimensional parametric plot of the three groups of people. You can change , the period of incubation, and , the duration of infectivity, to follow the trajectory of the solution.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+