Ponchon-Savarit Diagram for an Ethanol-Water Binary Mixture

The Ponchon–Savarit diagram provides a graphical method for solving coupled material and energy balances in separation processes involving binary mixtures. This Demonstration illustrates how the Ponchon–Savarit diagram can be computed for a nonideal binary mixture that has an azeotrope.
Consider a binary mixture of ethanol and water at a low to moderate pressure, , to be selected by the user. The gas phase is assumed ideal, but the liquid phase is nonideal. The Demonstration plots the Ponchon–Savarit diagram, which is also called the enthalpy-composition diagram. Enthalpy is expressed in kcal/kg and composition is expressed in weight fraction of ethanol. Also shown is the vapor equilibrium curve for ethanol-water.
Enthalpies for the liquid and vapor phases are computed using the following equations:
where is the latent heat of vaporization of chemical species at and and are the heat capacities for the liquid and the gas phases of chemical species , respectively; is a slowly-varying function of temperature and can be assumed constant [3]. The mole fractions of ethanol in the liquid and gas phases are denoted by and , respectively. Finally, is the excess enthalpy, which accounts for the nonideal behavior of the liquid mixture. We use the following correlation from [2] to compute the excess enthalpy as a function of composition and temperature:
, where is the mixture temperature and is the ethanol mole fraction. Here, , where and , , and are appropriate constants tabulated in [2].
The first snapshot of the Ponchon–Savarit diagram for is in full agreement with Figure 2-4 in [1].
Finally, the "tie lines", displayed in green, show the composition of the two phases that exist in equilibrium at the specified temperature. At the azeotropic composition the tie line is shown in red; it is vertical, confirming that at the azeotrope. At , the azeotrope composition in terms of ethanol weight fraction is 96% and the boiling temperature is .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] P. C. Wankat, Separation Process Engineering, 3rd ed., Upper Saddle River, NJ: Pearson, 2012.
[2] J. A. Larkin, "Thermodynamic Properties of Aqueous Non-Electrolyte Mixtures I. Excess Enthalpy for Water + Ethanol at 298.15 to 383.15 K," Journal of Chemical Thermodynamics, 7(2), 1975 pp. 137–148.
[3] R. H. Perry and D. W. Green, Perry's Chemical Engineers' Handbook, 7th ed., New York: McGraw–Hill, 1997.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+