10176

# The Frank-Kamenetskii Problem

The Frank–Kamenetskii problem relates to the self-heating of a reactive solid. When the heat generated by reaction is balanced by conduction in a one-dimensional slab of combustible material, the nonlinear boundary value problem (BVP) for , and admits two steady solutions. Here, is the dimensionless temperature. The BVP admits an analytical solution given by , where is one of the two solutions of the nonlinear equation (i.e., and ). The two analytical solutions are indicated by the blue and magenta curves. The dots represent the numerical solutions obtained using the Chebyshev collocation method. You can change the number of collocation points. You can clearly see that the analytical and numerical solutions are in agreement.

### DETAILS

In the discrete Chebyshev–Gauss–Lobatto case, the interior points are given by , at the collocation points. These points are extremums of the Chebyshev polynomial of the first kind .
The Chebyshev derivative matrix at the quadrature points , , is given by
, , for , and for , , and ,
where for and .
The matrix is then used as follows: and , where is a vector formed by evaluating at , , and and are the approximations of and at the .
Reference
[1] P. Moin, Fundamentals of Engineering Numerical Analysis, Cambridge, UK: Cambridge University Press, 2001.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.