9711

Using Eigenvalues to Solve a First-Order System of Two Coupled Differential Equations

Consider the coupled system of differential equations
,
where are the constant coefficients of a matrix . Recall that the eigenvalues and of are the roots of the quadratic equation and the corresponding eigenvectors solve the equation .
This Demonstration plots the system's direction field and phase portrait. In this example, you can adjust the constants in the equations to discover both real and complex solutions. The resulting solution will have the form and where are the eigenvalues of the systems and are the corresponding eigenvectors. Using Euler's formula , the solutions take the form . Since the Wronskian is never zero, it follows that and constitute a fundamental set of (real-valued) solutions to the system of equations.
  • Contributed by: Stephen Wilkerson
  • (United States Military Academy West Point, Department of Mathematics)

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

This is the complex eigenvalue example from [1], Section 3.4, Modeling with First Order Equations.
Reference
[1] J. R. Brannan and W. E. Boyce, Differential Equations with Boundary Value Problems: An Introduction to Modern Methods and Applications, New York: John Wiley and Sons, 2010.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+