Sliding Along a Tautochrone Path

This Demonstration illustrates the fact that a cycloid is a tautochrone (isochronous) path. Six beads slide without friction down and up six cycloidal wire paths, starting from different positions and with zero initial speed. It can be seen that the six beads always reach the bottom simultaneously.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The tautochrone path is the cycloid formed by a circle of radius 1 rolling on the axis from to . With as the position of a bead at time , this cycloid has the parametric equations . Using Lagrangian dynamics, with , the resulting equation of motion is .
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.